11 research outputs found

    Sequential Filtering Processes Shape Feature Detection in Crickets: A Framework for Song Pattern Recognition.

    Get PDF
    Intraspecific acoustic communication requires filtering processes and feature detectors in the auditory pathway of the receiver for the recognition of species-specific signals. Insects like acoustically communicating crickets allow describing and analysing the mechanisms underlying auditory processing at the behavioral and neural level. Female crickets approach male calling song, their phonotactic behavior is tuned to the characteristic features of the song, such as the carrier frequency and the temporal pattern of sound pulses. Data from behavioral experiments and from neural recordings at different stages of processing in the auditory pathway lead to a concept of serially arranged filtering mechanisms. These encompass a filter for the carrier frequency at the level of the hearing organ, and the pulse duration through phasic onset responses of afferents and reciprocal inhibition of thoracic interneurons. Further, processing by a delay line and coincidence detector circuit in the brain leads to feature detecting neurons that specifically respond to the species-specific pulse rate, and match the characteristics of the phonotactic response. This same circuit may also control the response to the species-specific chirp pattern. Based on these serial filters and the feature detecting mechanism, female phonotactic behavior is shaped and tuned to the characteristic properties of male calling song.Supported by the Biotechnology and Biological Sciences Research Council (BB/J01835X/1) and the Isaac Newton Trust (Trinity College, Cambridge).This is the final version of the article. It first appeared from Frontiers via http://dx.doi.org/10.3389/fphys.2016.0004

    Imaging fictive locomotor patterns in larval Drosophila.

    Get PDF
    We have established a preparation in larval Drosophila to monitor fictive locomotion simultaneously across abdominal and thoracic segments of the isolated CNS with genetically encoded Ca(2+) indicators. The Ca(2+) signals closely followed spiking activity measured electrophysiologically in nerve roots. Three motor patterns are analyzed. Two comprise waves of Ca(2+) signals that progress along the longitudinal body axis in a posterior-to-anterior or anterior-to-posterior direction. These waves had statistically indistinguishable intersegmental phase delays compared with segmental contractions during forward and backward crawling behavior, despite being ∼10 times slower. During these waves, motor neurons of the dorsal longitudinal and transverse muscles were active in the same order as the muscle groups are recruited during crawling behavior. A third fictive motor pattern exhibits a left-right asymmetry across segments and bears similarities with turning behavior in intact larvae, occurring equally frequently and involving asymmetry in the same segments. Ablation of the segments in which forward and backward waves of Ca(2+) signals were normally initiated did not eliminate production of Ca(2+) waves. When the brain and subesophageal ganglion (SOG) were removed, the remaining ganglia retained the ability to produce both forward and backward waves of motor activity, although the speed and frequency of waves changed. Bilateral asymmetry of activity was reduced when the brain was removed and abolished when the SOG was removed. This work paves the way to studying the neural and genetic underpinnings of segmentally coordinated motor pattern generation in Drosophila with imaging techniques.S.R.P. was supported by a Newton International Fellowship (Royal Society) and a Junior Fellowship (Janelia Research Campus, Howard Hughes Medical Institute). T.G.B. was supported by a Medical Research Council (UK) PhD grant. J.B. was supported by a Henry Dale Fellowship (Royal Society and Wellcome Trust). M.B. was supported by the Isaac Newton Trust.This is the final version of the article. It first appeared from the American Physiological Society via http://dx.doi.org/10.1152/jn.00731.201

    Hyperacute Directional Hearing and Phonotactic Steering in the Cricket (Gryllus bimaculatus deGeer)

    Get PDF
    Background: Auditory mate or prey localisation is central to the lifestyle of many animals and requires precise directional hearing. However, when the incident angle of sound approaches 0u azimuth, interaural time and intensity differences gradually vanish. This poses a demanding challenge to animals especially when interaural distances are small. To cope with these limitations imposed by the laws of acoustics, crickets employ a frequency tuned peripheral hearing system. Although this enhances auditory directionality the actual precision of directional hearing and phonotactic steering has never been studied in the behaviourally important frontal range. Principal Findings: Here we analysed the directionality of phonotaxis in female crickets (Gryllus bimaculatus) walking on an open-loop trackball system by measuring their steering accuracy towards male calling song presented at frontal angles of incidence. Within the range of 630u, females reliably discriminated the side of acoustic stimulation, even when the sound source deviated by only 1u from the animal’s length axis. Moreover, for angles of sound incidence between 1u and 6u the females precisely walked towards the sound source. Measuring the tympanic membrane oscillations of the front leg ears with a laser vibrometer revealed between 0u and 30u a linear increasing function of interaural amplitude differences with a slope of 0.4 dB/u. Auditory nerve recordings closely reflected these bilateral differences in afferent response latency and intensity that provide the physiological basis for precise auditory steering

    Coding properties in invertebrate sensory systems

    No full text
    International audienc

    Tonic signaling from O₂ sensors sets neural circuit activity and behavioral state.

    Get PDF
    Tonic receptors convey stimulus duration and intensity and are implicated in homeostatic control. However, how tonic homeostatic signals are generated and how they reconfigure neural circuits and modify animal behavior is poorly understood. Here we show that Caenorhabditis elegans O(2)-sensing neurons are tonic receptors that continuously signal ambient [O(2)] to set the animal's behavioral state. Sustained signaling relied on a Ca(2+) relay involving L-type voltage-gated Ca(2+) channels, the ryanodine and the inositol-1,4,5-trisphosphate receptors. Tonic activity evoked continuous neuropeptide release, which helps elicit the enduring behavioral state associated with high [O(2)]. Sustained O(2) receptor signaling was propagated to downstream neural circuits, including the hub interneuron RMG. O(2) receptors evoked similar locomotory states at particular O(2) concentrations, regardless of previous d[O(2)]/dt. However, a phasic component of the URX receptors' response to high d[O(2)]/dt, as well as tonic-to-phasic transformations in downstream interneurons, enabled transient reorientation movements shaped by d[O(2)]/dt. Our results highlight how tonic homeostatic signals can generate both transient and enduring behavioral change.(Note: * K.E. Busch and P. laurent contributed equally to this study.)Comment in: R. Benton, Nature Neuroscience 15(2012), 501-503.info:eu-repo/semantics/publishe
    corecore